top of page
GFP-positive-pyramidal-neurons-in-the-pr

Publications from the

Cecilia Flores Lab

See our Publications in

Morgunova, A., Ibrahim, P., Chen, G.G., Coury, S.M., Turecki, G., Meaney, M.J., Gifuni, A., Gotlib, I.H., Nagy, C., Ho, T.C., Flores, C. (2023). Preparation and Processing of Dried Blood Spots for MicroRNA Sequencing. Biology Methods and

Protocols, bpad020. https://doi.org/10.1093/biomethods/bpad020

Caldwell, M., Ayo-Jibunoh, V., Mendoza, J.C., Brimblecombe, K.R., Reynolds, L.M., Jiang, X.Y.Z., Alarcon, C., Fiore, E., Tomaio, J.N., Phillips, G.R., Mingote, S., Flores, C., Casaccia,P., Liu, J.,  

Cragg, S.J., McCloskey, D.P., Leora Yetnikoff L. (2023). Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Structure Function. https://doi.org/10.1007/s00429-023-02695-y 

 

Reynolds, L. M., Hernandez, G., MacGowan, D., Popescu, C., Nouel, D., Cuesta, S., Burke, S., Savell, K. E., Zhao, J., Restrepo-Lozano, J. M., Giroux, M., Israel, S., Orsini, T., He, S., Wodzinski, M., Avramescu, R. G., Pokinko, M., Epelbaum, J. G., Niu, Z., Pantoja-Urbán, A. H., Trudeau, L. E., Kolb, B., Day, J. J., Flores, C. (2023). Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nature Communications, 14(1), 4035. https://doi.org/10.1038/s41467-023-39665-1

 

Batra, A., Cuesta, S., Alves, M. B., Restrepo, J. M., Giroux, M., Laureano, D. P., Mucellini Lovato, A. B., Miguel, P. M., Machado, T. D., Dalle Molle, R., Flores, C., & Silveira, P. P. (2023). Relationship between insulin and Netrin-1/DCC guidance cue pathway regulation in the prefrontal cortex of rodents exposed to prenatal dietary restriction. Journal of Developmental Origins of Health and Disease, 1–7. Advance online publication. https://doi.org/10.1017/S204017442300017X

Pantoja-Urbán, A. H., Richer, S., Mittermaier, A., Giroux, M., Nouel, D., Hernandez, G., & Flores, C. (2023). Gains and Losses: Resilience to Social Defeat Stress in Adolescent Female Mice. Biological Psychiatry, S0006-3223(23)01368-9. Advance online publication. https://doi.org/10.1016/j.biopsych.2023.06.014

 

Mahmud, A., Avramescu, R. G., Niu, Z., & Flores, C. (2023). Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Frontiers in Neural Circuits, 17, 1113023. https://doi.org/10.3389/fncir.2023.1113023

* Invited review for special issue on Horizons in Neural Circuits, Volume II; Editors Takao Hentch and Edward Ruthauzer 

Avramescu, R. G., & Flores, C. (2023). We're not in Kansas anymore: ectopic dopaminergic terminals as an explanation for the positive symptoms in psychiatric pathology. Journal of Psychiatry & Neuroscience,  48(1), E74–E77. https://doi.org/10.1503/jpn.230015

* Invited editorial

Reynolds, L.M., Pantoja-Urbán, A.H., MacGowan, D., Manitt, C., Nouel, D., Flores, C. (2023). Quantifying Dopaminergic Innervation in Rodents Using Unbiased Stereology. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_2

 

Darcq, E., Nouel, D., Hernandez, G., Pokinko, M., Ash, P., Moquin, L., Gratton, A., Kieffer, B., & Flores, C. (2023). Reduced dopamine release in Dcc haploinsufficiency male mice abolishes the rewarding effects of cocaine but not those of morphine and ethanol. Psychopharmacology, 240(3), 637–646. https://doi.org/10.1007/s00213-022-06288-1

* Invited manuscript for Special Issue of Psychopharmacology to honor the contributions of Dr. Nadia Chaudhri to addiction research and society at large

Hoops, D., Kyne, R. F., Salameh, S., Ewing, E., He, A. T., Orsini, T., Durand, A., Popescu, C., Zhao, J. M., Schatz, K. C., Li, L., Carroll, Q. E., Liu, G., Paul, M. J., & Flores, C. (2022). The scheduling of adolescence with Netrin-1 and UNC5C. bioRxiv: the preprint server for biology, 2023.01.19.521267. https://doi.org/10.1101/2023.01.19.521267

Restrepo-Lozano JM, Flores C, Silveira PP. (2022) Novel functional genomic approaches bridging psychiatry and neuroscience. Biological Psychiatry: global open science. https://doi.org/10.1016/j.bpsgos.2022.07.005

Vassilev, P., Fonseca, E., Hernandez, G., Pantoja-Urban, A. H., Giroux, M., Nouel, D., Van Leer, E., & Flores, C. (2022). Custom-Built Operant Conditioning Setup for Calcium Imaging and Cognitive Testing in Freely Moving Mice. eNeuro, 9(1), ENEURO.0430-21.2022. https://doi.org/10.1523/ENEURO.0430-21.2022

 

Morgunova, A., Flores, C. (2022). MicroRNAs as promising peripheral sensors of prefrontal cortex developmental trajectory and psychiatric risk. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 47, 387–388. https://doi.org/10.1038/s41386-021-01113-3

Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. (2022) Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Molecular Psychiatry, 27, 2742–2750.https://doi.org/10.1038/s41380-022-01533-7

Featured in:

Reynolds, L. M., & Flores, C. (2021). Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Frontiers in Neural Circuits, 15, 735625. https://doi.org/10.3389/fncir.2021.735625

* Invited review for the Hot Topics section in the issue: The Prefrontal Cortex and official publication of the American College of Neuropsychopharmacology

Cooper, H. M., & Flores, C. (2021). Mechanisms of cortical development: From the embryo to adulthood. Seminars in Cell & Developmental Biology, 118, 1-3. https://doi.org/10.1016/j.semcdb.2021.08.012

thumbnail_X10849521.jpeg

Morgunova, A., & Flores, C. (2021). MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Seminars in Cell & Developmental Biology,118, 83-91. https://doi.org/10.1016/j.semcdb.2021.04.011

* Special issue on Cortical Development: from Embryo to Adolescence

Vassilev, P., Pantoja-Urban, A. H., Giroux, M., Nouel, D., Hernandez, G., Orsini, T., & Flores, C. (2021). Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). eNeuro, 8(2), ENEURO.0045-21.2021. Advance online publication. https://doi.org/10.1523/ENEURO.0045-21.2021

Reynolds, L.M., Flores, C. (2021). Chapter 26 - Adolescent dopamine development: connecting experience with vulnerability or resilience to psychiatric disease. (eds) Diagnosis, Management and Modeling of Neurodevelopmental Disorders, 295-304.Academic Press https://doi.org/10.1016/B978-0-12-817988-8.00026-9.

Torres-Berrío A., Morgunova, A., Giroux, M., Cuesta, S., Nestler, E.J., Flores, C. (2021). miR-218 in adolescence predicts and mediates vulnerability to stress. Biological Psychiatry, 89(9):911-919. https://doi.org/10.1016/j.biopsych.2020.10.015.

* Editor's choice of that issue

Morgunova, A., Pokhvisneva, I., Nolvi, S., Entringer, S., Wadhwa, P., Gilmore, J., Styner, M., Buss, C., Sassi, R. B., Hall, G. B. C., O'Donnell, K. J., Meaney, M. J., Silveira, P. P., & Flores, C. A. (2020). DCC gene network in the prefrontal cortex is associated with total brain volume in childhood. Journal of Psychiatry & Neuroscience, 46(1), E154–E163. https://doi.org/10.1503/jpn.200081

* Invited Manuscript as recipient of the CCNP Innovation Research Award

Cuesta, S., Nouel, D., Reynolds, L. M., Morgunova, A., Torres-Berrío, A., White, A., Hernandez, G., Cooper, H. M., & Flores, C. (2020). Dopamine Axon Targeting in the Nucleus Accumbens in Adolescence Requires Netrin-1. Frontiers in Cell and Developmental Biology, 8, 487. https://doi.org/10.3389/fcell.2020.00487

*Invited Manuscript for a special issue on Development of the Dopaminergic System– From Stem Cells to Circuits

Torres-Berrío, A., Hernandez, G., Nestler, E. J., & Flores, C. (2020). The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biological Psychiatry, 88(8), 611–624. https://doi.org/10.1016/j.biopsych.2020.04.025

Screen Shot 2021-03-30 at 10.26.07 AM.pn

Torres-Berrío, A., Nouel, D., Cuesta, S., Parise, E. M., Restrepo-Lozano, J. M., Larochelle, P., Nestler, E. J., & Flores, C. (2020). MiR-218: a molecular switch and potential biomarker of susceptibility to stress. Molecular Psychiatry, 25(5), 951–964. https://doi.org/10.1038/s41380-019-0421-5

 

Cuesta, S., Restrepo-Lozano, J. M., Popescu, C., He, S., Reynolds, L. M., Israel, S., Hernandez, G., Rais, R., Slusher, B. S., & Flores, C. (2020). DCC-related developmental effects of abused- versus therapeutic-like amphetamine doses in adolescence. Addiction Biology, 25(4), e12791. https://doi.org/10.1111/adb.12791

Vassilev, P., Salim, M., Popescu, C., Flores, C., Hernandez, G. (2020) Low-cost conditioned place preference setup including video recording and analysis of behaviour. MethodsX, Apr 25:7:100899. https://doi.org/10.1016/j.mex.2020.100899

Vosberg, D.E., Leyton, M. & Flores, C. (2020) The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Molecular Psychiatry 25, 297–307. https://doi.org/10.1038/s41380-019-0561-7

Vosberg, D. E., Beaulé, V., Torres-Berrío, A., Cooke, D., Chalupa, A., Jaworska, N., Cox, S. M. L., Larcher, K., Zhang, Y., Allard, D., Durand, F., Dagher, A., Benkelfat, C., Srour, M., Tampieri, D., La Piana, R., Joober, R., Lepore, F., Rouleau, G., Pascual-Leone, A., Théoret, H. (2019). Neural function in DCC mutation carriers with and without mirror movements. Annals of Neurology, 85(3), 433–442. https://doi.org/10.1002/ana.25418

 

Reynolds, L. M., & Flores, C. (2019). Guidance cues: linking drug use in adolescence with psychiatric disorders. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 44(1), 225–226. https://doi.org/10.1038/s41386-018-0221-7

 

Reynolds, L. M., & Flores, C. (2019). Guidance cues: linking drug use in adolescence with psychiatric disorders. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 44(1), 225–226. https://doi.org/10.1038/s41386-018-0221-7

 

Reynolds, L. M., Yetnikoff, L., Pokinko, M., Wodzinski, M., Epelbaum, J. G., Lambert, L. C., Cossette, M. P., Arvanitogiannis, A., & Flores, C. (2019). Early Adolescence is a Critical Period for the Maturation of Inhibitory Behavior. Cerebral Cortex (New York, N.Y. : 1991), 29(9), 3676–3686. https://doi.org/10.1093/cercor/bhy247

Vosberg, D. E., Zhang, Y., Menegaux, A., Chalupa, A., Manitt, C., Zehntner, S., Eng, C., DeDuck, K., Allard, D., Durand, F., Dagher, A., Benkelfat, C., Srour, M., Joober, R., Lepore, F., Rouleau, G., Théoret, H., Bedell, B. J., Flores, C., & Leyton, M. (2018). Mesocorticolimbic Connectivity and Volumetric Alterations in DCC Mutation Carriers. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 38(20), 4655–4665. https://doi.org/10.1523/JNEUROSCI.3251-17.2018

Cuesta, S., Restrepo-Lozano, J. M., Silvestrin, S., Nouel, D., Torres-Berrío, A., Reynolds, L. M., Arvanitogiannis, A., & Flores, C. (2018). Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 43(4), 900–911. https://doi.org/10.1038/npp.2017.284

Reynolds, L. M., Pokinko, M., Torres-Berrío, A., Cuesta, S., Lambert, L. C., Del Cid Pellitero, E., Wodzinski, M., Manitt, C., Krimpenfort, P., Kolb, B., & Flores, C. (2018). DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biological Psychiatry, 83(2), 181–192. https://doi.org/10.1016/j.biopsych.2017.06.009

Hoops, D., Reynolds, L. M., Restrepo-Lozano, J. M., & Flores, C. (2018). Dopamine Development in the Mouse Orbital Prefrontal Cortex Is Protracted and Sensitive to Amphetamine in Adolescence. eNeuro, 5(1), ENEURO.0372-17.2017. https://doi.org/10.1523/ENEURO.0372-17.2017

 

Salameh, S., Nouel, D., Flores, C., & Hoops, D. (2017). An optimized immunohistochemistry protocol for detecting the guidance cue Netrin-1 in neural tissue. MethodsX, 5, 1–7. https://doi.org/10.1016/j.mex.2017.12.001

 

Walker, D. M., Bell, M. R., Flores, C., Gulley, J. M., Willing, J., & Paul, M. J. (2017). Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 37(45), 10855–10866. https://doi.org/10.1523/JNEUROSCI.1834-17.2017

 

Hoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004

Screen Shot 2021-03-30 at 1.14.12 PM.png

Madularu, D., Mathieu, A. P., Kumaragamage, C., Reynolds, L. M., Near, J., Flores, C., & Rajah, M. N. (2017). A non-invasive restraining system for awake mouse imaging. Journal of Neuroscience Methods, 287, 53–57. https://doi.org/10.1016/j.jneumeth.2017.06.008

 

Pokinko, M., Grant, A., Shahabi, F., Dumont, Y., Manitt, C., & Flores, C. (2017). Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan. Neuroscience, 346, 182–189. https://doi.org/10.1016/j.neuroscience.2017.01.009

 

Torres-Berrío, A., Lopez, J. P., Bagot, R. C., Nouel, D., Dal Bo, G., Cuesta, S., Zhu, L., Manitt, C., Eng, C., Cooper, H. M., Storch, K. F., Turecki, G., Nestler, E. J., & Flores, C. (2017). DCC Confers Susceptibility to Depression-like Behaviors in Humans and Mice and Is Regulated by miR-218. Biological Psychiatry, 81(4), 306–315. https://doi.org/10.1016/j.biopsych.2016.08.017

 

Verwey, M., Grant, A., Meti, N., Adye-White, L., Torres-Berrío, A., Rioux, V., Lévesque, M., Charron, F., & Flores, C. (2016). Mesocortical Dopamine Phenotypes in Mice Lacking the Sonic Hedgehog Receptor Cdon. eNeuro, 3(3), ENEURO.0009-16.2016. https://doi.org/10.1523/ENEURO.0009-16.2016

Reynolds, L. M., Gifuni, A. J., McCrea, E. T., Shizgal, P., & Flores, C. (2016). dcc Haploinsufficiency results in blunted sensitivity to cocaine enhancement of reward seeking. Behavioural Brain Research, 298(Pt A), 27–31. https://doi.org/10.1016/j.bbr.2015.05.020

* Invited Submission to Special Issue: Developmental Regulation of Memory in Anxiety and Addiction

Pokinko, M., Moquin, L., Torres-Berrío, A., Gratton, A., & Flores, C. (2015). Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology, 232(20), 3719–3729. https://doi.org/10.1007/s00213-015-4032-9

Reynolds, L. M., Makowski, C. S., Yogendran, S. V., Kiessling, S., Cermakian, N., & Flores, C. (2015). Amphetamine in adolescence disrupts the development of medial prefrontal cortex dopamine connectivity in a DCC-dependent manner. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 40(5), 1101–1112. https://doi.org/10.1038/npp.2014.287

*Referenced by National Institute of Drug Abuse

Grant, A., Manitt, C., & Flores, C. (2014). Haloperidol treatment downregulates DCC expression in the ventral tegmental area. Neuroscience Letters, 575, 58–62. https://doi.org/10.1016/j.neulet.2014.05.030

 

Liang, DY., Zheng, M., Sun, Y. Sahbaie, P., Low, S.A., Peltz, G., Scherrer, G., Flores, C., Clark, D., (2014). The Netrin-1 receptor DCC is a regulator of maladaptive responses to chronic morphine administration. BMC Genomics, 15, 345. https://doi.org/10.1186/1471-2164-15-345

 

Yetnikoff, L., Pokinko, M., Arvanitogiannis, A., & Flores, C. (2014). Adolescence: a time of transition for the phenotype of dcc heterozygous mice. Psychopharmacology, 231(8), 1705–1714. https://doi.org/10.1007/s00213-013-3083-z

 

Daubaras, M., Dal Bo, G., & Flores, C. (2014). Target-dependent expression of the netrin-1 receptor, UNC5C, in projection neurons of the ventral tegmental area. Neuroscience, 260, 36–46. https://doi.org/10.1016/j.neuroscience.2013.12.007

 

Manitt, C., Eng, C., Pokinko, M., Ryan, R. T., Torres-Berrío, A., Lopez, J. P., Yogendran, S. V., Daubaras, M. J., Grant, A., Schmidt, E. R., Tronche, F., Krimpenfort, P., Cooper, H. M., Pasterkamp, R. J., Kolb, B., Turecki, G., Wong, T. P., Nestler, E. J., Giros, B., & Flores, C. (2013). dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Translational Psychiatry, 3(12), e338. https://doi.org/10.1038/tp.2013.105

*contributed equally to this work

Kim, J. H., Lavan, D., Chen, N., Flores, C., Cooper, H., & Lawrence, A. J. (2013). Netrin-1 receptor-deficient mice show age-specific impairment in drug-induced locomotor hyperactivity but still self-administer methamphetamine. Psychopharmacology, 230(4), 607–616. https://doi.org/10.1007/s00213-013-3187-5

 

Auger, M. L., Schmidt, E. R. E., Manitt, C., Dal-Bo, G., Pasterkamp, R. J., & Flores, C. (2013). unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. The European Journal of Neuroscience, 38:2853-2863. https://doi.org/10.1111/ejn.12270

 

Aguilar-Valles, A., Jung, S., Poole, S., Flores, C., & Luheshi, G. N. (2012). Leptin and interleukin-6 alter the function of mesolimbic dopamine neurons in a rodent model of prenatal inflammation. Psychoneuroendocrinology, 37(7), 956–969. https://doi.org/10.1016/j.psyneuen.2011.11.003

 

Grant, A., Fathalli, F., Rouleau, G., Joober, R., & Flores, C. (2012). Association between schizophrenia and genetic variation in DCC: a case-control study. Schizophrenia Research, 137(1-3), 26–31. https://doi.org/10.1016/j.schres.2012.02.023

 

Argento, J. K., Arvanitogiannis, A., & Flores, C. (2012). Juvenile exposure to methylphenidate reduces cocaine reward and alters netrin-1 receptor expression in adulthood. Behavioural Brain Research, 229(1), 202–207. https://doi.org/10.1016/j.bbr.2012.01.008

 

Flores C. (2011). Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. Journal of Psychiatry & Neuroscience, 36(5), 296–310. https://doi.org/10.1503/jpn.100171

 

Yetnikoff, L., Almey, A., Arvanitogiannis, A., & Flores, C. (2011). Abolition of the behavioral phenotype of adult netrin-1 receptor deficient mice by exposure to amphetamine during the juvenile period. Psychopharmacology, 217(4), 505–514. https://doi.org/10.1007/s00213-011-2312-6

 

Manitt, C., Mimee, A., Eng, C., Pokinko, M., Stroh, T., Cooper, H. M., Kolb, B., & Flores, C. (2011). The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 31(23), 8381–8394. https://doi.org/10.1523/JNEUROSCI.0606-11.2011

 

Manitt, C., Labelle-Dumais, C., Eng, C., Grant, A., Mimee, A., Stroh, T., & Flores, C. (2010). Peri-pubertal emergence of UNC-5 homologue expression by dopamine neurons in rodents. PloS One, 5(7), e11463. https://doi.org/10.1371/journal.pone.0011463

*Contributed equally to this work

 

Aguilar-Valles, A., Flores, C., & Luheshi, G. N. (2010). Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PloS One, 5(6), e10967. https://doi.org/10.1371/journal.pone.0010967

 

Yetnikoff, L., Eng, C., Benning, S., & Flores, C. (2010). Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. The European Journal of Neuroscience, 31(7), 1292–1302. https://doi.org/10.1111/j.1460-9568.2010.07163.x

 

Grant, A., Speed, Z., Labelle-Dumais, C., & Flores, C. (2009). Post-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice. The European Journal of Neuroscience, 30(7), 1318–1328. https://doi.org/10.1111/j.1460-9568.2009.06919.x

 

Hercher, C., Parent, M., Flores, C., Canetti, L., Turecki, G., & Mechawar, N. (2009). Alcohol dependence-related increase of glial cell density in the anterior cingulate cortex of suicide completers. Journal of Psychiatry & Neuroscience, 34(4), 281–288. PMID: 19568479

 

Flores, C., Bhardwaj, S. K., Labelle-Dumais, C., & Srivastava, L. K. (2009). Altered netrin-1 receptor expression in dopamine terminal regions following neonatal ventral hippocampal lesions in the rat. Synapse, (New York, N.Y.), 63(1), 54–60. https://doi.org/10.1002/syn.20584

 

Grant, A., Hoops, D., Labelle-Dumais, C., Prévost, M., Rajabi, H., Kolb, B., Stewart, J., Arvanitogiannis, A., & Flores, C. (2007). Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. The European Journal of Neuroscience, 26(11), 3215–3228.https://doi.org/10.1111/j.1460-9568.2007.05888.x

 

Yetnikoff, L., Labelle-Dumais, C., & Flores, C. (2007). Regulation of netrin-1 receptors by amphetamine in the adult brain. Neuroscience, 150(4), 764–773. https://doi.org/10.1016/j.neuroscience.2007.09.069

 

Flores, C., Wen, X., Labelle-Dumais, C., & Kolb, B. (2007). Chronic phencyclidine treatment increases dendritic spine density in prefrontal cortex and nucleus accumbens neurons. Synapse, (New York, N.Y.), 61(12), 978–984. https://doi.org/10.1002/syn.20452

 

Flores, C., Manitt, C., Rodaros, D., Thompson, K. M., Rajabi, H., Luk, K. C., Tritsch, N. X., Sadikot, A. F., Stewart, J., & Kennedy, T. E. (2005). Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Molecular Psychiatry, 10(6), 606–612. https://doi.org/10.1038/sj.mp.4001607

 

Flores, C., & Coyle, J. T. (2003). Regulation of glutamate carboxypeptidase II function in corticolimbic regions of rat brain by phencyclidine, haloperidol, and clozapine. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology, 28(7), 1227–1234. https://doi.org/10.1038/sj.npp.1300129

 

Flores, C., Stewart, J., Salmaso, N., Zhang, Y., & Boksa, P. (2002). Astrocytic basic fibroblast growth factor expression in dopaminergic regions after perinatal anoxia. Biological Psychiatry, 52(4), 362–370. https://doi.org/10.1016/s0006-3223(02)01363-x

 

Flores, C., & Stewart, J. (2000). Basic fibroblast growth factor as a mediator of the effects of glutamate in the development of long-lasting sensitization to stimulant drugs: studies in the rat. Psychopharmacology, 151(2-3), 152–165. https://doi.org/10.1007/s002130000417

 

Flores, C., & Stewart, J. (2000). Changes in astrocytic basic fibroblast growth factor expression during and after prolonged exposure to escalating doses of amphetamine. Neuroscience, 98(2), 287–293. https://doi.org/10.1016/s0306-4522(00)00115-9

 

Flores, C., Samaha, A. N., & Stewart, J. (2000). Requirement of endogenous basic fibroblast growth factor for sensitization to amphetamine. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 20(2), RC55. https://doi.org/10.1523/JNEUROSCI.20-02-j0003.2000

 

Flores, C., Salmaso, N., Cain, S., Rodaros, D., & Stewart, J. (1999). Ovariectomy of adult rats leads to increased expression of astrocytic basic fibroblast growth factor in the ventral tegmental area and in dopaminergic projection regions of the entorhinal and prefrontal cortex. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 19(19), 8665–8673. https://doi.org/10.1523/JNEUROSCI.19-19-08665.1999

bottom of page